MANAGEMENT OF PATIENT WITH BURNS

Definition

 Injuries that result from direct contact or exposure to any physical, thermal, chemical, electrical, or radiation source are termed as Burns.

STATISTICS

> An estimated 265000 deaths every year are caused by burns.

One of leading causes of disability-adjusted life-years (DALYs) lost in low- and middle-income countries.

Problem Statement: India

- > 70 lakh burn injury cases annually
- Over 10,00,000 people are moderately or severely burnt every year
- > 1.4 lakh people die of burn every year.
- ➤ Around 70% of all burn injuries occur in most productive age group (15-35 years).
- Majority are women & children.
- As many as 80% of cases admitted are a result of accidents at home (kitchen-related incidents)

CLASSIFICATION

Etiology

- ➤ Based on Cause
 - o Thermal
 - Electrical
 - Chemical
 - Radiation
 - Inhalation

Thermal Injuries

- Most common
- · Types: Dry & wet

Contact

- Direct contact with hot object (i.e. pan or iron)
- Anything that sticks to skin (i.e. tar, grease or foods)

<u>Flame</u>

- Direct contact with flame (dry heat)
- o structural fires / clothing catching on fire

▶Scalding

- ▶ Direct contact with hot liquid / vapours (moist heat)
- ▶ Cooking, bathing or car radiator overheating
- ▶ Single most common injury in the paediatric pt

Electrical Burns

- Usually follows accidental contact with exposed object conducting electricity
 - Electrically powered devices
 - Electrical wiring
 - Power transmission lines

- Can also result from Lightning
- Damage depends on intensity of current

Low-tension injuries(<1000 V)

- Low energy burns → Minimal damage to subcutaneous tissue
- Entry & Exit points fingers → small deep burns
- AC → Tetany within muscles, cardiac arrest due to interference with normal cardiac pacing

High-tension injuries(>1000V)

 Earthed high tension lines → Arc over the patient → Flash burn

Severity depends upon:

- what tissue current passes through (Low voltage/ High voltage)
- width or extent of the current pathway
- o AC or DC
- duration of current contact

- Lightning
 - **OHIGH VOLTAGE!!!**
 - Injury may result from
 - Direct Strike
 - Side Flash

Chemical Burns

- Usually associated with industrial exposure
- Accidental mishandling of household cleaners

Degree of tissue damage determined by

- Chemical nature of the agent
- Concentration of the agent
- Duration of skin contact

Acids- Eg- Formic acid, sulphuric acid

Alkalis - Eg. Lime, potassium hydroxide

Radiation Exposure

Waves or particles of energy that are emitted from radioactive sources

Alpha radiation

- ✓ Large, travel a short distance, minimal penetrating ability
- Can harm internal organs if <u>inhaled</u>, <u>ingested</u> or absorbed

Beta radiation

- ✓ Small, more energy, more penetrating ability
- ✓ Usually enter through damaged skin, ingestion or inhalation

INHALATION

Smoke and inhalation injury

carbon monoxide poisoning inhalation injury above glottis inhalation injury below glottis

According Depth of burn

Superficial Partial-Thickness (First Degree burn)

cause-Sunburn

Low-intensity flash

Skin involvement- Epidermis

Symptoms- Reddened, Tingling, Pain that is soothed by cooling

Deep Partial-Thickness (Second Degree)

Cause

- Scalds
- Flash flame
- Contact burns
- chemical

Skin involvement- Epidermis, upper dermis, portion of deeper dermis

Manifestations- Blisters that are red, shiny. Severe pain caused by nerve injury ,mild to moderate edema

Recovery in 2 to 4 weeks, some scarring and depigmentation contractures

Full-Thickness (Third Degree)

Cause-

- Flame
- Prolonged exposure to
- · hot liquids
- Electric current
- Chemical

Skin involvement- Epidermis, entire dermis, and sometimes subcutaneous tissue; may involve connective tissue, muscle,

and bone

Manifestations- Dry; pale white, Leathery, visible thrombosed blood vessels

 Pain free, all skin elements and local nerve endings are destroyed, surgical intervention required for healing

4th Degree

E+D+S+muscles, tendons & bone

Extent of Body Surface Area Injured

- RULE OF NINES,
- LUND AND BROWDER METHOD,
- PALM METHOD.

RULE OF NINES

- An estimation of the TBSA involved in a burn is simplified by using the rule of nines
- The rule of nines is a quick way to calculate the extent of burns. The system assigns percentages in multiples of nine to major body surfaces

LUND AND BROWDER METHOD

- A more precise method of estimating the extent of a burn is the Lund and Browder method, which recognizes that the percentage of TBSA of various anatomic parts
- By dividing the body into very small areas and providing an estimate of the proportion of TBSA

PALM METHOD

In patients with scattered burns, a method to estimate the percentage

of burn is the palm method. The size of the patient's palm is

approximately 1% of TBSA.

Location of burn

- Burns to face, neck ,chest and back may inhibit respiratory function due to mechanical obstruction secondary to edema, eschar formation
- Burns to the ear, nose are susceptible to infection because of poor blood supply
- Burns to buttocks, genitalia are susceptible to infection because of contamination
- Burns on extremities cause circulatory compromise and neurologic impairment.